10

11

12

13

14

15

16

17

18

19

20

21

22

23

Short title.—L.ife history and habitat of Urspelerpes brucei
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Abstract.—We examined the life history and habitat characteristics for the Patch-nosed
Salamander, Urspelerpes brucei. Body-size measurements of individuals captured using
litter bags and by hand from 2008 to 2010 indicated that the larval period lasts at least two
years, salamanders attain reproductive maturity at or shortly after metamorphosis, and
adults have very little variation in body size. Occupied streams are characterized by small
size, little water, and narrow, steep-walled ravines. Within occupied streams, larval

capture rate was significantly and negatively related to mean water depth, underscoring
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the importance of protecting headwaters. We hypothesize that the only known population
of U. brucei east of the Tugaloo River was isolated from the west-bank populations by the
tremendous increase in water flow caused by the capture of the Tallulah and Chattooga

rivers by the Tugaloo as recently as the Pleistocene.

Key Words.—amphibian; headwater; larvae; salamander; plethodontid; development; stream

capture; metamorphosis
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INTRODUCTION

Understanding the life history and habitat of rare species is fundamental to making informed
decisions regarding conservation and management. This is particularly true for enigmatic or
poorly studied species where there is limited data on population dynamics or for species that may
occur among patchy habitats with small geographic ranges. For example, many species within
the salamander family Plethodontidae, which comprise two-thirds of all known salamander
species, have been described in the last few decades as the result of the taxonomic splitting (e.g.,
Jacobs 1987; Highton 1989; Tilley and Mahoney 1996; Highton and Peabody 2000; Campbell et
al. 2010). A few previously unknown, morphologically distinct species have also been described
(e.g., Wynn et al. 1988). Many of these species are poorly studied ecologically, and their natural
history is characterized as unknown or, in the case of members of larger species complexes,
presumed to be similar to other, better-known relatives (Drukker et al. 2018). There is a need to
describe basic life and natural histories for all of these species to determine whether they have
unique life histories and habitat requirements that distinguish them from their better-known
relatives.

The Patch-nosed Salamander, Urspelerpes brucei, is a recently described, enigmatic species
endemic to northeastern Georgia and adjacent South Carolina (Camp et al. 2009, 2012). This is
the only member of the genus Urspelerpes, which is a sister taxon to Eurycea within the tribe
Spelerpini (Wake 2012). Urspelerpes brucei is restricted to a very small geographic area where
the Tugaloo River bisects the contact zone between the Blue Ridge and Piedmont physiographic
provinces. Known as the Tugaloo Mosaic, this region is unique in its soil and floral composition

(Garst and Sullivan 1993; Menzel et al. 2016). It is akin to the Piedmont in elevation, but due to
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its topographic heterogeneity and montane flora, it is sometimes physiographically classified as
Blue Ridge (Jensen et al. 2008). Urspelerpes brucei occurs in 1st- and 2nd-order streams that
flow through steep-walled ravines (Camp et al. 2012; Pierson et al. 2016). It is currently known
from only 17 such streams, all but one of them occurring in Georgia. Given its small geographic
range and limited number of known sites, U. brucei is a species of conservation concern.

The life history of this species is poorly known, but given its evolutionary and morphological
distinctiveness (Camp et al. 2009), its habitat and life history may be relatively unique among
related and syntopic species. Like other members of the tribe Spelerpini (Ryan and Bruce 2000),
it has a biphasic life cycle (Camp et al. 2009); however, the length of the larval stage has not
been described. Adult males and females, while dimorphic in color and pattern, do not differ in
body size and presumably metamorphose at the same time. No post-metamorphic, immature
specimens have been reported. Our purpose was to describe specific variables associated with

the habitat of U. brucei and report data on larval development and metamorphosis.

MATERIALS AND METHODS

During 2008, 2009, and 2010, we collected larval U. brucei partly as the result of
distributional surveys and partly to collect tissue for later analysis of population genetics. We
collected specimens from mid-March through early October, primarily using litter bags (Dodd et
al. 2012). We placed litter bags systematically in shallow, flowing water. We also
opportunistically collected specimens by hand. We measured snout-vent length (SVL) in the
field using a small, metric ruler. Taking measurements in this manner undoubtedly introduced

error. However, we declined to take the salamanders from the field site or to anesthetize them to
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get more accurate measurements because of the rarity of the species and the possible lethal
effects that anesthesia has on small, plethodontid larvae (Camp et al. 2014). Following
measurement, we released all larvae on site.

We attempted to determine larval period by plotting SVL in two ways. First, we pooled SVLs
of larvae captured from different streams across years to maximize sample size. We plotted
these measurements against day of the year. Because of inherent year-to-year and stream-to-
stream variance in growth, we also plotted SVLs of larvae from the largest sample (n = 11) taken
at one time from the same site (8 June 2010). We took any adults encountered to the lab for
more accurate measurements and later returned them to their resident stream. During early fall
of 2009 we discovered a single metamorphosing individual; at the same time in 2010 we found
three additional metamorphosing salamanders. We sacrificed the one collected in 2009, and we
measured and dissected it to determine reproductive state. We measured all of the other
metamorphosing individuals in the field and released them on site. We examined all of them for
potential external secondary sex characteristics.

As the result of the above survey efforts combined with a survey using environmental DNA
(eDNA,; Pierson et al. 2016), we discovered a total of 17 independent streams in which U. brucei
occurs. During 2018, we took five measurements of each of five variables that appeared to be
important to the habitat for 14 of the known streams for U. brucei. We measured water depth
(cm) in the center of the stream. We estimated flow velocity by measuring the time in sec it took
a Styrofoam fishing cork to travel 1 m; we then converted this to m sec-1. We took these
measurements during a relatively rainy period for the region (scattered thunderstorms daily);
therefore, water depth and flow velocity were higher than is typical. However, we were

primarily concerned with relative, not absolute values. Because all measurements were
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completed within a few days of each other, water depth and velocity should be reflective of
differences among streams. We determined aspect of stream flow using a compass, and we
noted stream order and any unique characteristics of the vegetation. We measured width of the
entire stream bed, both wet and dry portions, as a relatively permanent indicator of high-water
flow. We took the transverse ground-to-ground distance at 1 m above the stream as an indicator
of the immediately adjacent topography. We estimated slope by measuring the two legs of a
right triangle, setting the substrate distance as the hypotenuse. We established the short leg
vertically as 0.5 m by placing a meter stick vertically on the substrate in the center of the stream.
We then measured the long leg as the upstream distance from the half-meter mark on the meter
stick to the point where the measurement intersected the substrate. We then determined slope in
degrees based on the trigonometry of a right triangle. We took five replicate measurements for
each variable at widely distributed, selected points that reflected the stream’s full range of
variation. We used standard correlation statistics to describe relationships among variables. To
compare overall variation among variables, we calculated the coefficient of variation for each
variable by dividing its standard deviation by its mean.

We did not design the collection protocol to account for variation in detectability, an
important consideration in drawing conclusions regarding density or abundance (Mazerolle et al.
2007). However, we felt that an analysis of our crude data on capture rate would be suggestive
of the important habitat of this species. Because this species has only been found in both 1st- or
2nd-order streams, we analyzed whether larval capture rate was related to water depth, which we
took as an indicator of relative stream size. Because a primary goal for trapping larvae was to
collect tissue for analysis of population genetics, we focused our trapping effort on representative

streams across the known geographic range of the species. Therefore, we based our
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determination of capture rate (n x 103 per trap night) from the eight streams that had been heavily
trapped using litter bags. We did not use specimens from other streams or any that we
incidentally collected. Although between-bag variance of larval counts can be high (Chalmers
and Droege 2002; Dodd et al. 2012), we used large sample sizes of trap-nights (900-3500 per
stream) to generate reliable estimates of capture rates. For our analysis, we regressed capture
rate (n trap-night-1) against mean water depth for the eight streams. Because we used the data for
water depth in two different analyses (regression and correlation), we tested for statistical

significance involving this variable with an adjusted alpha level of 0.025.

RESULTS

Mean SVL (£ 1 SE) of eight adult males was 25.83 £ 0.22 mm. Adult females (n =5)
averaged 26.11 + 0.26 mm. There was no significant difference in SVL between the sexes (t =
0.790; P = 0.446). All adults averaged 25.76 £ 0.17 mm SVL.

The four metamorphosing individuals averaged 24.42 + 0.20 mm SVL. At first glance all
four had the muted coloration characteristic of adult females. However, two had very obscure
dorsolateral stripes, which are found only in adult males, and one had very short nasal cirri. The
individual dissected lacked the cirri but contained fully developed, pigmented testes and
pigmented vasa, although they were uncoiled. These observations led to our conclusion that
reproductive maturity likely occurs simultaneous to metamorphosis without an extended post-
metamorphic, immature period. The other two individuals had no signs of external

characteristics found in males and were presumed female.
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The 65 larvae measured had a mean SVL of 18.01 £ 0.41 mm. However, variance was high,
and at least two, possibly more, size classes were present in both the pooled data across streams
and years (Fig. 1) and the data from the single collection of 11 larvae (Fig. 2).

Although stream variables were measured during a rainy period, values for mean water depth
were below 10 cm in all but one stream. Mean water depth was significantly correlated with
mean width of the stream bed (r = 0.779; P < 0.001), which exceeded 3 m in only one stream
(Table 1). Slope and flow rate were also significantly correlated (r = 0.592; P = 0.024). Mean
slope ranged from less than 4o to over 230, and flow rate ranged from 0.2 to 0.6 m sec-2 (Table 1).
No other variables were significantly correlated to one another.

Water depth had the highest coefficient of variation (0.91), and ravine width had the lowest
(0.28). Aspect was highly variable, with stream-flow direction ranging from due north to due
south (Table 1).

The analysis of capture rate among streams with known Urspelerpes occupancy indicated a
higher capture rate in streams with shallow water. The relationship between capture rate and
water depth fit a negative power curve (P = 0.006; Fig. 3).

All streams in which we found Urspelerpes flowed through mature deciduous forest with a
closed canopy. Trees were typical of a mesic slope forest (Wharton 1978) with common species
being various oaks (Quercus), Tulip Poplar (Liriodendron tulipifera), and American Beech
(Fagus grandifolia). All streams were edged with at least one species of heath (Rhododendron).
In all but one stream, Great Laurel (Rhododendron maximum) was abundant. In the other stream
the heath was Piedmont Rhododendron (Rhododendron minus). Both species of heath were

present at most streams.
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185

186 Urspelerpes brucei is among the smallest plethodontid salamanders, having SVLs comparable
187  to the smallest species of Eurycea (E. chamberlaini and E. quadridigitata) and Desmognathus
188  (D. aeneus, D. organi, and D. wrighti) as well as the minute salamanders of the genus Thorius
189  (Bruce 2000). As was previously reported (Camp et al. 2009), no sexual size dimorphism is

190  apparent in U. brucei, a characteristic that it shares with other miniaturized species of Eurycea
191  (Semlitsch and McMillan 1980), Desmognathus (Organ 1961; Hining and Bruce 2005), and

192 many Thorius (Bruce 2000). What is unique about body size of adult Urspelerpes, however, is
193  the very small variance in adult body size. It has the smallest amount of variance relative to its
194  body size of any plethodontid studied to date (Fig. 4). Therefore, we assume that very little

195  growth occurs after reproductive maturity is attained.

196 Reproductive maturity is likely achieved simultaneous to metamorphosis or very shortly

197  thereafter (Camp et al. 2012), suggested in this current study by metamorphosing individual

198  Urspelerpes that were almost as large as adults, possessing maturing gonads, and showing signs
199  of sexually dimorphic characters. Although the virtual absence of a post-metamorphic, immature
200  period is unusual in plethodontids, Urspelerpes shares this characteristic with some populations
201 of another spelerpine, Gyrinophilus porphyriticus (Bruce 1972). The presence of enlarged

202  gonads at metamorphosis in U. brucei suggests that sexual maturation actually begins during the
203 larval stage. This is perhaps unsurprising, as the tribe Spelerpini is characterized by numerous
204  examples of smaller clades and species that have independently evolved paedomorphosis (Bonett

205  etal. 2014).
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Virtually all of the variation in body size of U. brucei occurs during larval development.
Graphic representation of larval SVLs suggests that individuals spend at least two years as
larvae. Small sample sizes, high variance, and size-class overlap makes it impossible to
determine the exact length of the larval period at this time. Though it is possible that some
variance in SVL measurements in the pooled data (Fig. 1) is the result of variation among
streams and years, the high variance in body size among larvae collected in a single,
simultaneous sample (Fig. 2) suggests that is unlikely. It is more likely that the variation in body
size reflects the presence of multiple age cohorts of larvae. Possibly, there is asynchronous
reproduction; however, across multiple years of this study, we have only detected
metamorphosing individuals at a single time of year. This suggests a synchronous
metamorphosis and lends no support for the hypothesis of asynchronous reproduction.
Moreover, asynchronous reproduction is not common among plethodontids, including other
spelerpines.

The first described localities for U. brucei were all small, 1st- or 2nd-order streams in steep-
walled ravines. Our survey of a larger number of sites confirmed these earlier observations.
Ravine width showed the smallest coefficient of variation among the variables that we measured.
Although aspect was not consistent, the narrow, steep walls of the ravines ensures that these
habitats remain moist. This is further indicated by the abundance of heath, particularly R.
maximum, which requires high levels of moisture (Duncan and Duncan 1988).

Although water depth showed a relatively high coefficient of variation among the streams in
which this species exists, there was a negative association between larval capture rate and water
depth in occupied streams. This agrees with our personal observations in which larvae are most

easily found at the origins of streams where they first emerge as seepages. Our analysis has not
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accounted for detectability and how that might vary as a function of stream depth; therefore,
capture rate may conflate true variation in larval density with variation in detectability.
Therefore, we interpret those results with caution. However, our data combined with the
apparent absence in larger streams certainly suggest that the smallest streams are the most
important habitat. Other small and miniature Appalachian salamanders (e.g., small
Desmognathus and Eurycea) are also associated with headwater streams and often occur along
the margins of larger streams or, given sufficient substrate moisture, out in the forest floor away
from the stream itself. Unlike those species, however, U. brucei has never been found in either
situation. This species appears to be a headwater endemic and adds to the emerging recognition
of the importance of conserving these habitats (Lowe and Likens 2005; Meyer et al. 2007).

The dependence of Urspelerpes on headwater streams is also of interest biogeographically.
Urspelerpes is known from a single stream in South Carolina and is separated from all other
occupied streams by the Tugaloo River. The Tugaloo has a channel more than 50 m wide at the
entrance of the South Carolina Urspelerpes stream and has a mean discharge rate of 55 ms sec-1
(DuBose 2017). This river is formed by the confluence of the Tallulah and Chattooga rivers,
both of which originate in the Blue Ridge Mountains of North Carolina. Like other similar rivers
of the region (Wharton 1978), it possesses a robust fish fauna. Intensive efforts to discover U.
brucei in nearby, seemingly suitable streams in South Carolina by both trapping and eDNA have
proven unsuccessful (Pierson et al. 2016). These negative results suggest that this small
population is the only one, or one of very few, located on the east side of the river and is
functionally isolated from the known populations in Georgia.

It is difficult to conceive how such a small salamander that is dependent on small, headwater

streams could disperse across such a significant waterway. A possible explanation for the
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distribution of this species lies in the drainage history of the Tugaloo. The Tallulah and
Chattooga rivers drained into the Chattahoochee River prior to their capture by the Tugaloo as
recently as the Pleistocene (Johnson 1907; Voss et al. 1995; DuBose 2017). Water was diverted
from the Chattahoochee, which eventually empties into the Gulf of Mexico via the Apalachicola
River. Those mountain waters now flow through the Tugaloo and drain directly into the Atlantic
Ocean by way of the Savannah River. The original headwaters of the Tugaloo were located near
the current range of U. brucei (Voss et al. 1995). We hypothesize that U. brucei was originally
associated with the headwaters of the Tugaloo River, and the South Carolina population was
isolated when the range of this species was disrupted by the stream-capture event that led to the
tremendous increase in water volume flowing along the Tugaloo. Genetic analysis is underway
to test this hypothesis and to determine if the South Carolina population is sufficiently divergent
from those in Georgia to warrant special conservation attention.

Additional questions remain unanswered regarding this elusive species and invite investigation
beyond what we have so far been able to do. For example, why is there so little variance in adult
body size compared to other plethodontids? Is it possible that adults are short lived and the
species approaches semelparity? Regarding their conservation, what are critical differences
between small streams in which these salamanders occur and those in which they are absent?
What is the effect of invasive species, e.g., wild hogs, which are abundant in the area? A great
deal is still unknown regarding the biology of U. brucei. However, we hope that the results
presented herein will help in determining appropriate steps in ensuring its long-term health as a

Species.
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383
TABLE 1. Characteristics of 14 streams occupied by the Patch-nosed Salamander (Urspelerpes brucei). Water Depth, Bed Width,
Ravine Width, Slope, and Flow rate are given as mean + 1 standard deviation. Data summary for each of those variables is based
on 5 replicates; the last row represents grand means for each. Numbers in parentheses for variables other than aspect represent

range of values. More than one value for aspect indicates change in direction of stream flow.

Dominant Order Aspect (o Water Depth  Bed Width Ravine Width  Slope (o) Flow Rate (m
Heath from N) (cm) (m) (m) sec-2)
Rhododendron  1st 32 3.6+24 1.7+05 76+25 53+34 0.31+0.08
maximum (1.5-7.5) (0.9-2.3) (5.2-11.0) (2.0-10.9) (0.27-0.46)
Rhododendron  1st 182 47+23 1.7+0.2 6.8+0.9 5.6+43 0.31+0.12
maximum (1.5-7.5) (1.5-2.0) (5.5-7.9) (2.9-13.2) (0.20-0.46)
Rhododendron  1st 116, 135 20+£15 1.2+0.3 6.4+25 39+15 0.30+0.13
maximum (2.0-5.0) (0.8-7.51.5)  (3.7-9.1) (2.4-6.2) (0.13-0.44)
Rhododendron  2nd 30,270,312 28=+14 1.4+0.3 3.6+1.2 33+19 0.27 +0.06
maximum (1.0-4.5) (1.0-1.8) (2.5-4.6) (2.1-6.7) (0.18-0.33)
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3.9+1.9
(2.0-7.0)
27+13
(1.0-4.0)
1.0+0.7
(0.3-2.0)
12.0+3.9
(7.5-18.0)
72+45
(1.5-13.0)
13+08
(0.5-2.5)
11+05
(0.5-2.0)
0.4+0.4

(0.1-1.0)

1.7+0.2
(1.4-2.0)
26+0.8
(2.0-4.0)
15+0.4
(1.0-2.1)
3.7+0.7
(2.7-4.6)
2.7+0.7
(1.7-3.4)
1.7+0.6
(0.9-2.4)
22+05
(1.8-2.7)
17+08

(1.0-1.8)
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5.5+2.2
(3.7-8.8)
6.9+138
(4.9-9.1)
42+12
(3.1-6.0)
55+0.6
(4.9-6.4)
6.6+2.0
(4.0-8.8)
46+15
(3.4-7.0)
54+05
(4.3-5.8)
6.6+ 16

(4.6-8.5)

79+1.9
(5.9-10.3)
54+55
(2.5-15.3)
23.4 105
(11.6-39.3)
53+3.1
(2.5-10.3)
47+1.9
(1.8-6.2)
73+5.1
(3.5-15.3)
3.9+0.7
(3.1-4.9)
74+24

(4.7-10.3)

0.35+ 0.14
(0.18-0.55)
0.41 +0.09
(0.33-0.53)
0.41 +0.24
(0.25-0.80)
0.45 + 0.09
(0.33-0.57)
0.34 +0.03
(0.30-0.36)
0.23 £0.05
(0.20-0.31)
0.20 +0.03
(0.17-0.24)
0.31 +0.06

(0.24-0.41)
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31+11
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5.42
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0.33 +0.04
(0.31-0.39)
0.61+0.31
(0.33-0.97)

0.345
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FIGURE 1. Distribution of measurements of snout-vent length (SVL) of the Patch-nosed
Salamander (Urspelerpes brucei) taken from six streams during 2009-2011. Day represents day
of the year from 1 January. Open circles represent larvae; closed circles represent adults; open
triangles represent metamorphosing individuals. This graph indicates that larvae are approaching
adult size at metamorphosis, which occurs during late summer/early fall. Although data from

several streams have been pooled, it further suggests a multi-year larval period.
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401  FIGURE 2. Distribution of SVL measurements of 11 larval Patch-nosed Salamanders
402 (Urspelerpes brucei) collected from the same stream 8 June 2010. This distribution indicates a

403  multi-year larval period.
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FIGURE 3. Regression (power curve: Y = 6.87 x X-053) analysis of larval capture rate of the

Patch-nosed Salamander (Urspelerpes brucei) and mean water depth of occupied streams. The

graph shows that capture rates were highest in the streams with the smallest depths.

= =
o N

(o]

D

Capture Rate (n x 103 per trap night)
N »

4

6 8 10
Mean Water Depth (cm)

23

12

14



421  FIGURE 4. Comparison of the ratio of range to mean of body size (SVL) in Urspelerpes brucei to
422  other tiny (< 30 mm SVL) plethodontid salamanders. Comparative data are from the genera

423 Thorius (Bruce 2000), Eurycea (Harrison and Guttman 2003), and Desmognathus (Hining and
424  Bruce 2005). Urspelerpes brucei has the lowest ratio of range to mean body size of any small
425  plethodontid salamander, suggesting that little growth occurs once sexual maturity is reached

426  shortly after metamorphosis.
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